Project Code

def conv(in_channels, out_channels, kernel_size=3, padding=1, bn=True, dilation=1, stride=1, relu=True, bias=True):
    modules = [nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)]
    if bn:
        modules.append(nn.BatchNorm2d(out_channels))
    if relu:
        modules.append(nn.ReLU(inplace=True))
    return nn.Sequential(*modules)

def conv_dw(in_channels, out_channels, kernel_size=3, padding=1, stride=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation=dilation, groups=in_channels, bias=False),
        nn.BatchNorm2d(in_channels),
        nn.ReLU(inplace=True),

        nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(inplace=True),
    )

def conv_dw_no_bn(in_channels, out_channels, kernel_size=3, padding=1, stride=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation=dilation, groups=in_channels, bias=False),
        nn.ELU(inplace=True),

        nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False),
        nn.ELU(inplace=True),
    )

These functions define different types of convolutional layers in PyTorch, each with specific characteristics:

1. conv


2. conv_dw


3. conv_dw_no_bn


Summary of Differences: