The convert_to_onnx.py script is a utility for converting a PyTorch model into the ONNX (Open Neural Network Exchange) format. ONNX is a widely used format for exporting models to be used in other frameworks or deployment environments, such as TensorRT, OpenVINO, or ONNX Runtime.
convert_to_onnx Functiondef convert_to_onnx(net, output_name):
input = torch.randn(1, 3, 256, 456)
input_names = ['data']
output_names = ['stage_0_output_1_heatmaps', 'stage_0_output_0_pafs',
'stage_1_output_1_heatmaps', 'stage_1_output_0_pafs']
torch.onnx.export(net, input, output_name, verbose=True, input_names=input_names, output_names=output_names)
net) into an ONNX model and saves it to a file.net: The PyTorch model to be converted.output_name: The name of the output ONNX file.Define a Dummy Input:
input = torch.randn(1, 3, 256, 456)
[1, 3, 256, 456] is created to simulate a single RGB image with a height of 256 and a width of 456.torch.onnx.export to trace the model's computation graph.Specify Input and Output Names:
input_names = ['data']
output_names = ['stage_0_output_1_heatmaps', 'stage_0_output_0_pafs',
'stage_1_output_1_heatmaps', 'stage_1_output_0_pafs']
input_names: The name of the input tensor (e.g., 'data').output_names: The names of the output tensors, corresponding to the heatmaps and PAFs generated by the model at different stages.Export the Model:
torch.onnx.export(net, input, output_name, verbose=True, input_names=input_names, output_names=output_names)
torch.onnx.export.output_name.verbose=True flag prints detailed information about the exported model.if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint')
parser.add_argument('--output-name', type=str, default='human-pose-estimation.onnx',
help='name of output model in ONNX format')
args = parser.parse_args()
net = PoseEstimationWithMobileNet()
checkpoint = torch.load(args.checkpoint_path)
load_state(net, checkpoint)
convert_to_onnx(net, args.output_name)
convert_to_onnx function.Parse Command-Line Arguments:
parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint')
parser.add_argument('--output-name', type=str, default='human-pose-estimation.onnx',
help='name of output model in ONNX format')
-checkpoint-path: Path to the PyTorch checkpoint file containing the pre-trained model weights.-output-name: Name of the output ONNX file (default: 'human-pose-estimation.onnx').Load the Model:
net = PoseEstimationWithMobileNet()
checkpoint = torch.load(args.checkpoint_path)
load_state(net, checkpoint)
PoseEstimationWithMobileNet model.torch.load.load_state function.Convert to ONNX:
convert_to_onnx(net, args.output_name)
convert_to_onnx function to export the model to ONNX format.The script is executed from the command line with the required arguments:
python convert_to_onnx.py --checkpoint-path path/to/checkpoint.pth --output-name model.onnx
The script:
This script is useful for: