class Cpm(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.align = conv(in_channels, out_channels, kernel_size=1, padding=0, bn=False)
self.trunk = nn.Sequential(
conv_dw_no_bn(out_channels, out_channels),
conv_dw_no_bn(out_channels, out_channels),
conv_dw_no_bn(out_channels, out_channels)
)
self.conv = conv(out_channels, out_channels, bn=False)
def forward(self, x):
x = self.align(x)
x = self.conv(x + self.trunk(x))
return x
The Cpm
class (short for Convolutional Pose Machine) is a PyTorch module designed to process feature maps and refine them for pose estimation tasks. Here's a detailed breakdown of its components and functionality:
class Cpm(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
Cpm
class is a building block in the pose estimation model. It processes input feature maps and outputs refined feature maps.in_channels
: Number of input channels in the feature map.out_channels
: Number of output channels in the feature map.self.align
self.align = conv(in_channels, out_channels, kernel_size=1, padding=0, bn=False)
bn=False
).in_channels
) to the desired number of output channels (out_channels
).self.trunk
self.trunk = nn.Sequential(
conv_dw_no_bn(out_channels, out_channels),
conv_dw_no_bn(out_channels, out_channels),
conv_dw_no_bn(out_channels, out_channels)
)
conv_dw_no_bn
), each with:
self.conv
self.conv = conv(out_channels, out_channels, bn=False)
bn=False
).def forward(self, x):
x = self.align(x)
x = self.conv(x + self.trunk(x))
return x
Align Input:
x = self.align(x)
self.align
layer to adjust the number of channels.Trunk Features:
self.trunk(x)
self.trunk
(three depthwise separable convolution layers) to extract refined features.Feature Combination:
x + self.trunk(x)
x
) is added element-wise to the trunk's output. This acts as a residual connection, helping preserve the original input features.Final Convolution:
self.conv(...)
self.conv
layer for further refinement.Output:
return x