How to Integrate a Mobile-Friendly Re-ID Model with DeepSORT

If your objects are similar to the model’s training data (e.g., pedestrians/vehicles), you can directly use pre-trained models like:

Steps:

  1. Install Dependencies:

    pip install deep-sort-realtime torchreid  # For OSNet
    
  2. Replace the Embedder:

    from deep_sort_realtime.embedder import CustomEmbedder
    import torchreid
    
    class MobileReIDEmbedder(CustomEmbedder):
        def __init__(self):
            self.model = torchreid.models.build_model("osnet_x0_25", pretrained=True)
            self.model.eval()  # Disable dropout/BatchNorm
    
        def embed(self, crops):
            # crops: List of RGB numpy arrays (bounding box images)
            # Preprocess: Resize to 128x64, normalize, convert to tensor
            embeddings = self.model(crops)  # Returns [N, 128] features
            return embeddings.cpu().numpy()
    
    # Initialize DeepSORT with the custom embedder
    tracker = DeepSort(embedder=MobileReIDEmbedder())
    

Optimization Tips for Mobile

  1. Quantize the Model:

    # Convert to INT8 (TensorFlow Lite/PyTorch Quantization)
    torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
    
  2. Use Hardware Acceleration:

  3. Reduce Input Size: