If your objects are similar to the model’s training data (e.g., pedestrians/vehicles), you can directly use pre-trained models like:
Install Dependencies:
pip install deep-sort-realtime torchreid # For OSNet
Replace the Embedder:
from deep_sort_realtime.embedder import CustomEmbedder
import torchreid
class MobileReIDEmbedder(CustomEmbedder):
def __init__(self):
self.model = torchreid.models.build_model("osnet_x0_25", pretrained=True)
self.model.eval() # Disable dropout/BatchNorm
def embed(self, crops):
# crops: List of RGB numpy arrays (bounding box images)
# Preprocess: Resize to 128x64, normalize, convert to tensor
embeddings = self.model(crops) # Returns [N, 128] features
return embeddings.cpu().numpy()
# Initialize DeepSORT with the custom embedder
tracker = DeepSort(embedder=MobileReIDEmbedder())
Quantize the Model:
# Convert to INT8 (TensorFlow Lite/PyTorch Quantization)
torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
Use Hardware Acceleration:
Reduce Input Size:
64x32
pixels for faster inference.